Flattening Basic Blocks*

Jean Utke

Mathematics and Computer Science Division, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439-4844, USA; utke@mcs.anl.gov

1 The Problem

We consider a code that implements some numerical function
y=f(x):R"—»R™

in the context of automatic differentiation (AD) via source-to-source trans-
formation. Many AD-related publications [2, 3, 4, 5] assume the construction
of the computational graph G representing either the entire f, if possible, or
at least an execution trace of f at a given argument. Following the familiar
approach, G = (V, E) is assumed to be a directed, acyclic graph (DAG). The
set of vertices V = X U ZUY consists of vertices for the n independents
X, vertices for the m dependents Y, and vertices for p intermediate values Z
occurring in the computation of f. The edges E represent the direct depen-
dencies of the w € ZUY computed with elemental functions w = ¢(...,v;,...)
on the arguments v; € X U Z. The computations imply a dependency rela-
tion v; < w and its transitive closure <*. The ¢ are the elemental functions
(sin, cos, etc.) and operators (+,-,*, etc.) built into the given programming
language. All edges (v,w) € E are labeled with the local partial derivatives
Cyy = g—’:. The graph G is the basis for numerous investigations into strategies
for the efficient computation of derivative information, such as the Jacobian

O
J(x) = {a—i{l] eR™"i=1,....mj=1,....n
j

*This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38, and by the National Science Foundation’s Information Technology Re-
search Program under Contract OCE-0205590, “Adjoint Compiler Technology &
Standards” (ACTS).

2 Jean Utke

and Jacobian-vector products J&, JXg. As the exemplary application for this
paper we take the computation of a Jacobian, namely the transformation of G
into bipartite form [7]. Most practical applications do not require the complete
J for f. Instead, Jacobians Jj of subsections k of the code for f may be
preaccumulated, for instance for use in a subsequent reverse sweep. Such Jy
contain the partials of subsection outputs vy, with respect to their inputs xy.
Therefore, depending on the application context, such a preaccumulation of
sub-Jacobians can be beneficial if

e the preaccumulated Jacobian has fewer nonzero entries than intermediate
values or partials that would need to be stored for a subsequent reverse
sweep over all sections k, and

e computing Jj and (sparse) Ty = JkTyk is cheaper than back propagation
through the elemental ¢.

One measure of the efficiency of the Jacobian computation is the number of
operations incurred by the application of the chain rule seen as vertex [7] or
edge elimination in G or as face elimination [12] in the corresponding directed
line graph. The elimination order determines the operations count. Minimiz-
ing the operations count over all possible elimination orderings is conjectured
to be an NP-hard problem. The search space size depends on the size of G.
Most tools that implement AD algorithms use only the forward and reverse
modes of AD. This strategy reduces the operations count minimization to a
choice between the forward or the reverse elimination order. In particular, it
eliminates the need to actually construct G. On the other hand, numerous
examples show an advantage of the so-called cross-country elimination order-
ings over a strict forward or reverse mode. This is the main motivation to
investigate the practical construction of G in an AD context. The computa-
tion of Jacobian vector products with a minimal Jacobian representation in
the sense of scarcity preservation [8, 6] is another example of an application
requiring G.

For the construction of GG let us start with a simple example. When we look
at a sequence of expressions of plain scalar variables, it appears intuitive how
to concatenate expression graphs representing right-hand sides of assignments;
we call this process flattening into a graph G.

In the example in Figure 1 we start by copying the right-hand-side expres-
sion graph of assignment a; into G and note the fact that z is the left-hand
side by associating the maximal vertex © with z. We remember which vertex
represents the argument x. These associations are shown as the thin dotted
arrows. Even though z was also an argument, it was overwritten and therefore
is associated only with the maximal vertex ©. Next we look at assignment
a2 and notice the use of z in the right-hand side. Clearly, this use has to
be identified with the preceding left-hand side; that is, the z vertex in as is
identified with © already present in GG. Furthermore we note x appearing as
an argument again, and we identify it with the vertex in G that is already
associated with x. Now that all arguments of a; have been identified in G, we

Flattening Basic Blocks 3

Fig. 1. Flattening of assignments a1 and as into G; a1 : z=-(z*x), a2 : y=z/x

can simply copy the remaining vertex (/) (for the division intrinsic) and the
attached two edges to G. The vertex (/) becomes the new maximal vertex and
is associated with y, the left-hand side of as.

Obviously, practical codes are not restricted to scalars but use array deref-
erences, pointers, and so forth. For brevity we refer to such dereference ex-
pressions as “variables”. The process described in the paragraph above relies
on the identification of variables. In the case of plain scalar variables this
amounts to a match of symbol and scope. In the general setting, however, we
have to ensure that two variables are identified if they use the same address
in memory. Assume all z in the example in Figure 1 are replaced by pointer
dereferences *z and between a; and as we find pointer arithmetic, for instance
z+=k with some run-time parameter k. Without knowing k it is hard to tell
what address z is pointing to. As shown in Figure 2, the right-hand-side to
left-hand-side identification is no longer unique, indicated by the two dashed
edges.

& o
@,
.
P S

Fig. 2. For a1 : *z=-(*z#*x), as : y=*z/x, G becomes ambiguous.

In this paper we investigate the consequences of this ambiguity in the
context of AD. Section 2 considers the choices for the scope of code subsections
k for which we want to construct G. In Section 3 we formalize the flattening
algorithm, and in Section 5 we show the solution to the ambiguity problem.

4 Jean Utke

The construction and use of computational graphs for basic blocks also
play a role in optimizing compiler technology. There are similarities in the
approach [1] for constructing the graphs, but ambiguities may be treated
differently. Their typical use for tasks such as register allocation and object
code generation indicates a relatively advanced level in the compilation process
that is far removed from the high-level programming language used for the
source-to-source transformation in our context.? Consequently, we cannot rely
on a compiler environment to provide the computational graphs but rather
introduce an approach specifically suitable for the purposes of AD.

2 Control Flow Graph and the Scope of G

For programs implementing a general f, the control flow may depend on
the values of the arguments in X. For instance, argument-dependent loop
bounds do not permit the construction of a single G representing the code
for f for all possible input values. On the other hand, the construction
of an argument-specific GG, for example based on an execution trace, eas-
ily leads to huge computational graphs devoid of information indicating re-
peated structures. The actual goal of minimizing operations for the deriva-
tive computation sets practical limits for the size of G to which a minimiza-
tion algorithm may be applied. Also, the minimization algorithms are gen-
erally too costly to be reapplied to each argument-specific G. Therefore we
should require that G be structurally argument independent. Putting G in
the context of the control flow graph (CFG) [1, 10] provides a simple crite-
rion for structural independence. The vertices of a CFG are usually catego-
rized into {Entry, Exit, Loop, EndLoop, Branch, EndBranch, BasicBlock}.
For the following we assume a canonicalized representation of the program:

C1: All computations w = ¢(...,v;,...) are elements of an assignment state-
ment a of the form v := e with a single variable v = lhs(a) on the left-
hand-side and a right-hand-side expression e = rhs(a) that is side-effect
free.?

C2: All assignment statements are elements of an ordered list L of statements
contained in a BasicBlock vertex.

C3: A subroutine call is also a statement in L and may have side-effects; for
instance, it may modify a global variable.

C4: All functions and operators that are not intrinsic or have side-effects are
canonicalized into subroutine calls. Intrinsics have closed-form expressions
for their partial derivatives, which is the case for all elementals ¢.

C5: Intrinsics without arguments, for instance a function returning a constant
value, are inlined.

2A low-level, compiler-integrated transformation is possible but, so far, has not
been attempted in practice.
8Note, this excludes for instance C++ increment operations, as in ++i;

Flattening Basic Blocks 5

As indicated in Section 1, we consider computational subgraphs that either
cover contiguous subsections of L of a single BasicBlock or cover statements
across BasicBlock boundaries; see Section 7.1.

The parsing of the code implementing f by a compiler front-end yields the
abstract syntax tree (AST), which contains the respective elements for assign-
ments, their right-hand-side expression trees, subroutine calls, and so forth.
The CFG is derived subsequently from the AST. It associates the sequence of
assignments and subroutine calls in L with a BasicBlock.

The elemental operations w = ¢(...,v;,...) are the smallest computa-
tional subgraph. Because they already are bipartite, the first reasonable scope
for subgraphs is the right-hand-side expressions. They are generally repre-
sented as single-expression use (seu) graphs, where every nonminimal vertex
has at most one successor. In Section 3 we mention the intra right-hand-side
variable identification that may lead to multiple successors for the minimal
vertices. Except for parallel edges, the number of edges in a tree or seu graph
representation is the same. Because of the special structure of seu graphs, the
optimal elimination sequences can be constructed directly [11]. The so-called
statement-level preaccumulation has been used in a number of AD tools. It
yields noticeable gains over the plain forward mode in terms of computational
cost.

However, we aim for an extension to the next level with G representing a
sequence of right-hand-side expressions inside of a basic block. Going beyond
a single right-hand-side expression implies loosing the seu property for G.
Rather, G becomes a generic DAG. The motivation is that the extended scope
yields a G that is larger but has more structural information than do the
individual right-hand-side expressions. Minimizing over the larger G has the
potential for a better solution than statement-level preaccumulation, which
becomes just a special case. Staying in the scope of a basic block guarantees
structural independence. Refer to Section 7.1 for the handling of subroutine
calls.

3 Flattening Algorithm

We introduced the flattening in Section 1 for the example assignments shown
in Figure 1. The formal algorithm follows the same principle. The association
between vertices in GG and vertices in the original assignments, in Figure 1
depicted by thin dotted lines, are represented as a list of vertex pairs. We
iterate in an outer loop over all statements and for each statement we copy
the respective right-hand-side expressions in a loop over all expression vertices
and a subsequent loop over all expression edges. In order to find the proper
endpoints for all edges in G we also need to maintain the association for all
vertices representing intrinsics. This done with a second list of vertex pairs.

Algorithm 1 (Flattening Basic Blocks) Consider a sequence L' C L of
assignments a in a basic block to be flattened into a directed acyclic graph G =

6 Jean Utke

(V, E). We maintain two tracking lists P, (variables) and P, (intrinsics)
of pairs (ve,va) of vertices v, from the expression e = rhs(a) associated with
vertices vg € V. The expression e itself is already given as a seu graph (Ve, E.)
by some compiler front-end. Perform the following steps:

Pyor := Piptr 1= @
Vi=E:==0
Va € L' (in order)
e := rhs(a)
Vv e Ve
if (3(v,.) € Poar) // v already represented in V'
do nothing
elseif ((v is a variable) V (|{(w,v) : (w,v) € E.}| > 0)
add new vertex v’ to V:

if (v is a variable) // not a constant or intrinsic
Pyar := Pyar + (v,0) // track v in the variable list
elseif (|{(w,v) : (w,v) € E.}| >0) // must be an intrinsic
Pintr := Piner + (v,0") // track v in the intrinsic list
if {(v,w) : (v,w) € B} =0)
Vppae =0
V(v,w) € E.

add new edge (v',w') to G where
(v,v") € Pyar U Pintr A (w,w') € Pintr

if (A(v,v") € Pyar : v = lhs(a)) // if lhs(a) is already tracked
Py := Poyr — (v,0) // remove it
Pyor := Pyar + (lhs(a), Vi) // track lhs(a) as vy,q,

Note that the algorithm has to keep G acyclic, a requirement that be-
comes an issue if a variable in any of the assignments in L' is used and then
overwritten. Meeting this requirement is ensured by the last three lines of the
algorithm where we always want to keep track of the “most recent” vertex
in G that corresponds to a given variable. This tracking is sufficient because
of canonicalizations C1 and C4. In Figure 1 we show the situation of z being
overwritten. While processing a; we first add the pair (z,w) to Py, where
w is the left minimal vertex in G. After looping through all vertices and edges
of rhs(ay) we find the left-hand-side z exists in P,,,.. We remove (z,w) and
add (z,©) instead.

The variable identification implied by the test (3(v,.) € P,q,) is described
in Section 4. The algorithm is set up to identify input variables within and
across right-hand-side expressions of assignments. Also note that it will only
copy leaf nodes from the expression graphs that are variables. Intrinsics can-
not be represented by minimal variables because of canonicalization C5 and
constants always carry a zero edge label and therefore are ignored for our pur-
poses. To limit the formalism, we exclude special cases such as purely constant
assignments.

Flattening Basic Blocks 7
4 Variable Identification via Alias Analysis

We already mentioned the need for variable identification by address for
pointer dereferences, array subscripting, and so forth. In a compiler context,
equivalence information over (virtual) addresses is provided by alias analysis
[10]. The example in Figure 2 shows that syntactic equivalence is not sufficient
for identification; instead, one must ensure that z points to the same address
in both cases. The same applies to array subscripting, which is ubiquitous in
numerical codes. Therefore we have to identify variables by means other than
syntactic equivalence, for instance by (virtual) address equivalence.

We distinguish flow-sensitive and flow-insensitive as well as must and may
alias analysis; their respective results are given in a variety of formats. For
the purpose of this paper we introduce a vector of virtual address sets A. The
use u, of a variable v at a specific point in the code refers to a particular set
Ay, , through an index, which allows one to represent flow-sensitive analysis
results. Flow-insensitive alias analysis simply refers to the same address set
in the alias vector for every use of v in the entire program. If A, contains
exactly one address, it expresses must-alias information; that is, v must use
that one given address. If A,, contains more than one address, it represents
may-alias information; that is, v may use one of the given addresses.* For
instance, whenever there is a dependence of address calculations on run-time
parameters, the alias analysis will be unable to narrow A, down to a single
address.

Figure 3 shows an example with indices into the alias vector depicted in
the grey ovals. The conservatively assumed default lets all variables be aliased
to everything, for example by referring to a special entry <all> in the alias
vector representing the entire address space.

code: flow insensitive: | flow sensitive: | alias vector:
double x=1.0,z,y; ;é ;% 27<a11>
double* p=&x; i{&x}
z=sin(+p) ; 2| {az)
p=&z; g@ g@ o 37{&3(}
y=*p/2; @9 e 4({&x,8z}

Fig. 3. Variable uses and address sets for a simple C code

In order to positively identify vertex w with v, the test (I(v,.) € P,q4r) has
to be rephrased in terms of address sets:

1. |Ay, | = 1; that is, u,, occupies a single, unambiguous address.
2. I(uy,.) € Pyor with A, = A, ; that is, u, and u, must share the same
address.

“but it has to use one of them

8 Jean Utke

For the opposite test that w cannot be positively identified with any (v,.) €
Pyqr, it suffices to check V(v,.) € Pyar : Ay, N Ay, = 0.

5 Removing Ambiguity by Splitting

If in Algorithm 1 we cannot identify a given v € V, with any w € V', then the
algorithm creates a new vertex v’ in G. This already applies to variables within
a right-hand-side expression; see Figure 4 (a,b) for an example expression
xq+xr+*xs. The dashed edges indicate may-aliasing, which in the context of

ggg (V,EUA)
B S

(a) (©)

Fig. 4. Variable identification: intra right-hand side with (a): |Au,| = 1,
Ayeg = Ay, = A, , (b): |Au*[q’r’51| > 1,4, NAy, # 0,t,t' € {xq,*r,*s}, and
(c): ambiguous G as in Figure 2 with |A,,, | > 1, Ay, C Au,,

G can be expressed with edges A = {(v,w) € G : A, N A, # 0}. The
order of the sequence of assignments L' = (ay,...,a,) that is the input to
Algorithm 1 is essential for the semantic of the basic block. Algorithm 1
replaces this order by the evaluation order imposed by the directed edges in
G. If A ={, then G has minimal vertex count; it represents the dependency
information exactly and thereby preserves semantics. A # () in Figure 4 (b)
is benign; there are merely more vertices in the graph than in (a). A # () in
Figure 4 (c) has ambiguous dependency information. To preserve semantics
through correct dependency information, we therefore need to ensure that the
subset A = {(v,w) € A : w € rhs(a;) Av = lhs(ar), k < i} = 0. (V,EU A)
is a set of possible graphs G. We can, however, not decide which G is the
semantically correct one.

5.1 Splitting into Edge Subgraphs

We define an edge subgraph Gs = (Vs, Es) of a graph G = (V, E) with V; CV
and E; C E such that if (v,w) € Es, then v,w € Vs, and if (¢,u), (v,w) €
EsA(u,v) € E, then (u,v) € E5. A split of G into edge subgraphs G; = (V;, E;)

Flattening Basic Blocks 9

is defined such that (E = |J E;) A (E; N E; = 0). A split duplicates vertices
v for all pairs (u,v), (v,w) € E A (u,v) € E; A (v,w) € Ej such that they
occur in both graphs G; and G. The identity between vertices v = v; in Gj
and v = v; in G; can be expressed with the set of (virtual) identity edges
Z = {(vi,vj)}. In the graph (JV;,|J E; UZ) we find all G; and the pairs of
duplicated vertices connected by the edges in Z. With these identities one can
view the splitting into edge subgraphs as the inverse of Algorithm 1.

Consider all edges (v,w) € A as possible identities like those in Z. In
(V, EUA) for each such w only one (or no) element of A is the actual identity;
that is, (v,w) € Z. Like (V;, | E; UZ) we view (V, EU A) as consisting of
edge subgraphs G; that

1. have A; = (), that is, locally unambiguous dependency information, and

2. can be (partially) ordered with “<” such that V(v,w) € A : v € G
then w € G,G; < Gy, and, vice versa, Y(t,u) € A:ue G; then
te G, G; < Gj.

In other words all virtual in-edges are out-edges of preceding graphs and all
virtual out-edges are in-edges of succeeding graphs. Figure 5 shows (V, EU A)
corresponding to Figure 2 with two edge subsets as shaded areas on the left.
The split results in the two shaded, unambiguous subgraphs on the right; the
connecting virtual edge imposes the execution order. The ordering between

ST

Fig. 5. (V, EU A) for the example in Figure 2 before (left) and after (right) split

the graphs preserves the semantics. The splitting criterion implies a minimal
number of subgraphs, but it does not determine the subgraphs G; uniquely.
For example, consider A = {(v,w), (v',w)} resulting in Gy and G». Any edge
(t,u) for which there are no paths P, 4, Py v, Py ¢ can be made part of either
G, or G3. More generally we can define the set of edges that are movable
between edge subgraphs G; and G; as {(t,u) € E : V(v,w) € A:veVinwe
Vi« B Py, Py, }. Consequently, one can formulate criteria to determine an
optimal split that we will briefly investigate in Section 7.2.

5.2 Determining Jacobian Entries

We now have a split into [unambiguous subgraphs G, ...,G;. Before per-
forming any elimination in G; we have to determine which vertices in G; are
independent and which are dependent in order to obey the restrictions on

10 Jean Utke

vertex and edge eliminations or build the proper directed line graph for face
elimination, respectively. Obviously, the set of independents is exactly the set
of n; minimal vertices {v : B (u,v) € E;}. However, the usual assumption
that all maximal vertices constitute the dependent set is not necessarily true.
One might simply have a variable v assigned that is then referred to in a
right-hand-side expression flattened into G; as well as one flattened into a
successor G;. If we knew Z C A exactly, we could determine the m; depen-
dents as {v : (v,w) € Z,v € Vi,w € V;,j > i} U{v: H (v,u) € E;}. Then
the elimination in G; yields Jg, € R™*™ . If L' in Algorithm 1 contains the
entire code subsection k of interest (see Section 1), then we can write

14
r J -0 c
h:H(Pf.) ¢]PQ)

Pty 0 I

with the identity I; € R***% s; = |{(v,w) € Z,v € Vj,w € Vjij < i <
J'H- PET),PZ(»C) are permutation matrices that line up the rows and columns
correctly. 7 is not known, a conservatively correct approach is to consider all
all maximal vertices and all vertices with virtual out-edges in A dependent.
This is obviously suboptimal, and a better and practical solution is described
in the following section. While we can write the above formula for Jy, the
PET), PEC), and I; are fully determined only at runtime. A practical approach
would generate code containing saxpy operations over the elements of the J¢;,,
implementing a sequence of sparse Jacobian vector products.

6 Practical Solution

Disregarding the option for optimizing the split into subgraphs, we can pick
a convenient splitting point such as splitting exactly along the assignments a
in L'. This entails a number of simplifications, in particular the ability to use
the alias information in a suitably enhanced format known as du/ud-chains
[10]. In short, a ud-chain (read use-define-chain) D,,, contains for a particular
use of a variable v the locations of possible definitions, that is, assignments to
v. Similarly, a du-chain (read define-use-chain) U,, contains for a particular
definition of v the locations of all possible uses. Because of canonicalizations
C1, C2, and C4 we can simply equate these locations with the statements in
the BasicBlock vertices. Traditionally, ud-chains are introduced for the use of
a variable following alternative definitions in separate branches in the control
flow. If a ud-chain for v refers to exactly one statement, then this is the most
recent assignment to v with respect to the control flow and |A4,,| = 1. If
|Ay,| > 1, then the chain may refer to more than one statement even in the
same BasicBlock. In principle there is no limit to the locations du/ud-chains
may refer to. Dereferencing a global pointer variable can entail chains referring
to locations all over the code. Limiting the scope of the flattening algorithm,

Flattening Basic Blocks 11

we can reduce the needed information from ud/du-chains to statements within
the scope and a placeholder “0” for defining locations outside the scope.

6.1 Graph-Splitting Algorithm

The following algorithm is a somewhat simplified version of the practical im-
plementation mentioned in Section 7.

Algorithm 2 (Semantic-Preserving Flattening) Consider a sequence of
assignments L = (aq,...,a;) to be flattened into an ordered sequence of di-
rected acyclic graphs G; = (Vi, E;). We maintain two tracking lists Pya, (vari-
ables) and Pj,t, (intrinsics) of pairs (ve,vq,) of vertices v. from the expres-
sion e = rhs(a) associated with vertices vg, € V;. Perform the following steps.

inat: ©:=10
k=k =1
split: i:=i+1; K =k
Gi:=(Vi:=0,E; :=0)
Pyar := Pintr 1= Sins =0
loop: e := rhs(ax)
Vv e Ve
if (v is a variable)
if [(Du, = (a;) Nj<K') A //defined outside of G; and
(B (w,.) € Pyar : Dy, = Du,)] //not already there
V (Dy, = (0))) //or defined outside of the scope
add new vertez v' to Vi; Poar := Pyar + (v,0")
if |Du,| >1A3a; € Dy, : j > k) //ambiguous
remove all additions to G; done for ai
goto split:
elseif (|{(w,v) : (w,v) € E.}| > 0) //must be an intrinsic
add new vertez v’ to V;; Pintr := Pintr + (v,v')
V(v,w) € Ee

add new edge (v',w') to E; where
((v,v") € Pyar U Pintr) V ((£,0") € Pyar A Dy, = Dy,) N(w,w') € Pintr
if A(w,w') € Pyar : Au,, N Au, #0 with v =lhs(ar))
Pvar = Lvar — (’lU,’lUl)
Pyar = Pyar + (th(ak), U;naw)
Sihs := Sihs U lhs(ak)
if (k < |LI)
k:=k+1
goto loop:
else
done

In the algorithm the first statement in each G; has index &’. This allows one
to distinguish definitions of variables inside or outside of the currently consid-
ered G;. Reducing the ud-chain information to the given subsection scope has

12 Jean Utke

the drawback that variables with the same outside-of-scope definition cannot
be identified and, while preserving semantical correctness, we do not achieve
the minimal vertex count. Like Algorithm 1 it ignores constants. If we take
the example in Figure 2 and assume for ay that D, = D, = (0) and for
as that D, . = (a1,0),D,, = (0), then the algorithm will return G1 and G2
equivalent to the right-hand-sides of a; and as, respectively. If, however, in a,
we have D,,,, = (a1) then the algorithm returns the equivalent of G as shown
in Figure 1.

PrOPOSITION: Algorithm 2 attains the minimal number of subgraphs
satisfying the criterion in Section 5.1. Proof: A split into two subgraphs
G1 = (v1, E1),Ga = (v2, E) with v € Vi, w € V5 can cover all virtual edges
(W, w') in aset S with S = {(v,w).(v',w') € A: 8B Py, Py € (V,EUA)}.
If 3P, ', then v and w' and by edge subgraph definition all vertices and edges
on the path would have to be in one subgraph. Each virtual edge belongs to
such an S and (V, E U A) defines s sets. Then the minimal number of sub-
graphs is s + 1. The algorithm keeps flattening into the same subgraph as
long as all encountered virtual edges (v, w) originate outside of G; in another
G (this does not actually consider outside-of-scope references as edges). All
targets w lie inside of G;. Algorithm 2 creates a new subgraph whenever it
encounters the target vertex of an edge (v/,w') € A with a source with G;.
That means a P, , exists and a (v',w’) belongs to a new equivalence set.O

6.2 Determining the Dependents

The collected Sj,s for each G; can be used in conjunction with du-chains to
narrow down the proper set of dependent variables. Prior to the first statement
in split the set of dependent variables for G; is defined as

{v € Sips:3a; €Uy, :j>k\[0€U,,}

Because of ambiguity this is in general a superset of the exact set of dependent
variables but is in any case a subset of Sj,. Similarly, all dependent variables
y,, of code subsection k¥ having the same scope as the du-chain information
are determined by all variables v with 0 € U, .

We mentioned in Section 5.1 that the dependents may not be the max-
imal vertices. In order to perform a complete vertex elimination yielding a
bipartite graph, the graph with nonmaximal dependent vertex v needs to be
augmented with vertex v’ and an edge (v,v') that has an edge label ¢,r, = 1.
Then v’ takes the place of v in the dependent set, and a complete vertex
elimination is possible. In the case of edge eliminations we have to make sure
that there are no edge-front eliminations performed on in-edges of v. On the
other hand, there are no consequences for face elimination as the construction
of the directed line graph [12] properly represents v; see Figure 6 (a) and (b).

As the flattening algorithm identifies the left-hand-side variables with the
respective maximal right-hand-side expression vertices, an assignment y = x

Flattening Basic Blocks 13

O
S

ke ¢
A CO A% A

(a) (b) ()

Fig. 6. Nonmaximal dependents v: (a) extended G, (b) overlaid directed line graph,
(c) collapsed (left) and separated (right) independent/dependent variable

can collapse an independent and a dependent variable into the same vertex.
In G this may lead to a single unconnected vertex or a situation depicted in
the left graph in Figure 6 (c). In both cases a split of the collapsed vertex into
two vertices with a connecting edge solves the issue. The unit edge label is
the corresponding Jacobian entry.

7 Outlook and Conclusions

An extended version of Algorithm 2 is implemented in the OpenAD?® frame-
work of the Adjoint Compiler Technology & Standards (ACTS) project. For
the ACTS project the aforementioned alias analysis, the generation of du/ud-
chain information, and other analyses are being implemented in OpenAnaly-
sis.® The implementation cannot rely on all canonicalizations required in Sec-
tion 2; it also has to incorporate the handling of the special cases mentioned
in Section 6.2. While this complicates the case distinction in the algorithm,
it does not change its basic functionality. Also not covered in this paper is
a major addition to the implemented algorithm that integrates an intrinsic
specific activity analysis with the flattening. While the algorithms described
here only ignore constant vertices, there are some intrinsics such as floor
that are constant in open subdomains. Compiler style activity analysis im-
plemented as a dataflow analysis is typically not concerned with this level of
detail. OpenAD considers such intrinsics and can recognize ensuing constant
subgraphs across assignment boundaries. Since constant subgraphs do not
need to be flattened into GG, we do not need unique variable identification for
the constant propagation. Instead, we can establish a variable v is constant if
we found all assignments occurring in D,,, to be constant as well. The aspects
mentioned in the following sections represent possible extensions.

Swww-unix.mcs.anl.gov/~ utke/OpenAD

Cwww. hipersoft.rice.edu/openanalysis.

14 Jean Utke
7.1 Extending the Scope

While we concentrated on flattening of assignments in basic blocks, there are
some obvious ways of considering a computational graph in scopes across the
boundaries of a single basic block, which are

1. exploiting interface contraction
2. inlining subroutine calls, and sequentializing branches.

The first application is of clear practical value, the method and the benefits
are described in [9].

Building a computational graph through the body of a subroutine that is
being called from the code subsection in question amounts to inlining. In a
source transformation context inlining should be done explicitly by a compiler
front-end prior to any AD code transformation. On the other hand, we can
flatten “black box” subroutine calls if we can obtain all partial derivative
values directly, for instance, if they are returned as a specific set of parameters.
The flattening algorithm can treat such subroutine calls just like intrinsics.
Note that in a ud-chain, simply referring to the subroutine call as the definition
location for a variable is no longer sufficient because the subroutine may define
multiple variables and we then need additional information to find out which
one.

The last extension, the sequentializing of branches, has limited practical
value if the computational cost of executing all branches rather than one
becomes too high. The source transformation algorithm will have to make
the branches mutually independent, execute them sequentially, and select the
proper result. With alias information and du/ud-chains we already have the
prerequisites for such a transformation. It is, however, beyond the scope of
this paper.

7.2 Optimizing the Split

In theory, because of the edges that are movable between subgraphs G; (see
Section 5.1), we can have a variation of the number of independent and depen-
dent vertices in the G;, a variation in the sparsity of the Jg,, and, as the G;
change, a variation of the minimal cost for preaccumulating the corresponding
Ja,. The first two obviously affect the storage requirements for a subsequent
reverse sweep and the cost of the implied Jacobian vector products. So far we
have considered only minimizing the preaccumulation cost, which now would
become the inner problem of a nested optimization. At this point we are not
able to tackle such a nested optimization in practice and therefore stay with
the simple split choice made for Algorithm 2.

Moreover, one can construct examples showing that introducing splits ad-
ditional to the minimally necessary ones can undercut the above minimization
criteria. A simple example is a sequence of z = ab’ z;x = ab’ ;... imple-
mented by z = bT:L'; x = az and assuming splits necessitated by an inability

Flattening Basic Blocks 15

to identify x between the left- and right-hand sides. If we also split through
2z, then instead of storing n? Jacobian entries from abT, we can store a and
b with 2n entries. Rather than introducing additional splits, this issue should
be seen in the context of scarcity-preserving eliminations [8, 6].

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.

2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differ-
entiation: Techniques, Applications, and Tools, Proceedings Series, Philadelphia,
1996. STAM.

3. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Au-
tomatic Differentiation of Algorithms — From Simulation to Optimization, New
York, 2002. Springer.

4. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Imple-
mentation, and Application, Proceedings Series, Philadelphia, 1991. STAM.

5. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia,
2000.

6. A. Griewank. A mathematical view of automatic differentiation. Acta Numerica,
12:321-398, 2003.

7. A. Griewank and S. Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, pages
126-135. STAM, Philadelphia, 1991.

8. A. Griewank and O. Vogel. Analysis and exploitation of Jacobian scarcity. In
Proceedings of HPSC Hanos. Springer, 2003. To appear.

9. P. Hovland, C. Bischof, D. Spiegelman, and M. Casella. Efficient derivative codes
through automatic differentiation and interface contraction: An application in
biostatistics. SIAM Journal of Scientific Computing, 18,4:1056-1066, 1997.

10. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, San Francisco, 1997.

11. U. Naumann. Optimal pivoting in tangent-linear and adjoint systems of nonlin-
ear equations. Preprint ANL-MCS/P944-0402, Argonne National Laboratory,
2002.

12. U. Naumann. Optimal accumulation of Jacobian matrices by elimination meth-
ods on the dual computational graph. Math. Prog., 3(99):399-421, 2004.

The submitted manuscript has been created by the University of Chicago as Oper-
ator of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-
ENG-38 with the U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on behalf of the
Government.

